

Measuring principle capacitive sensors

- Principle of ideal plate capacitor

- Two plate electrodes are represented by sensor and measurement object

- Measurement on insulators

 The capacitive principle was enhanced by Micro-Epsilon

Capacity $C = \mathcal{E}_r \cdot \mathcal{E}_0 \cdot \frac{\text{Area A}}{\text{Distance d}}$

Benefits of the capacitive measuring principle

- High accuracy and stability
- Wear-free and non-contact measurement
- Sensors do not affect the measuring object
- Independent from conductance fluctuations and electrical conductive measuring objects

Please consider:

- Highest precision in clean environment
- Best measuring results against electrical conductive objects

Benefits of capacitive sensors:

- Tri electrode and active guard ring
- Fast sensor change without calibration
- Largest product range worldwide (flat sensors, sensors with integrated cable)
- Extreme stability

Ranges 0.05 to 10mm
Resolution 0.04nm
Temperature stability 11 ppm/° C

capaNCDT sensors

- Capacitive gap sensors
- Enlarged ranges
- Capacitive flat sensors

capaNCDT 6019

Miniature single-channel system

- For confined installation conditions
- Low power consumption
- Ideal for battery power supply

Ranges 0.2 - 10 mm

Consumption 8 mA (\pm 12V ...

 $\pm 18V$)

Resolution 0.1 %

Measuring rate 500 Hz

capaNCDT 6100

Compact single-channel system

- High temperature stability

- Reproducibility in nanometer ranges

- Can be synchronised with ungrounded

measuring object

Measuring ranges 0.2 - 10mm
Linearity 0.3% / 0.1%
Resolution 0.015%
Measuring rate 2kHz

capaNCDT 6300 / 6310

Compact high precision single-channel system

- High zero point stability and accuracy
- Extreme temperature stability
- Measurement against insulators

- Robust design

Measuring ranges 0.05 - 10mm Linearity 0.2% / 0.1%

Resolution 0.001%

Measuring rate 8kHz (-3dB)

capaNCDT 6350

Compact high speed single-channel system

 Ideal for detection of high dynamic movements

- High zero point stability and accuracy

 Highest configurability (measuring range and cable length)

Measuring ranges 0.2 - 10mm

Linearity 0.3%

Resolution 0.005%

Measuring rate 50kHz (-3dB)

capaNCDT 6500

Extreme resolution multi-channel system

- Multi-channel system with sub-nanometre resolution
- Extreme temperature stability
- Ethernet interface and PC software
- Integrated configurable signal processing

Measuring ranges 0.05 - 10mm
Linearity 0.05%
Resolution 0.000075%
Measuring rate 8.5kHz (-3dB)

High resolution measuring system

Capacitive measuring system

Resolution: 70 picometre = 70*10-12m = 0.000 000 000 070m

Gras grows within one week approx. 5cm (= 0.050m) i.e. in one second approx. 80 nanometre and in one thousands of a second 80 picometre.

With a resolution of 70 picometre the sensor is able to detect the growing of grass within one millisecond!

Thickness measurement of matrices for optical data carrier

Exact thickness detection for matrice controlling in the production process

- Fast and accurate measurement
- Wear-free
- Difference measurement

Technical data:

- Resolution < 0.05μm
- Repeat accuracy < 0.25µm
- Measuring range 2mm

Wear measurement of extruder bores

- Non-contact and wear-free measurement
- capaNCDT sensors are calibrated for all metals and independent of material inhomogeneity
- Thanks to the double sensor principle no exact centre position of the measuring head necessary.

Wear free measurement on brake disks

Deformation of the brake disk friction ring

- High band width
- Measurement against red glowing metal
- Extreme temperature stability
- Very accurate measurements

Target temperature >1000° C Resolution: (dyn.) 0.4µm

Measurement on wafers and semiconductors

Capacitive displacement sensors are used for nanometer adjustments of lenses in objectives for wafer exposures

Measuring range 1.2mm

Resolution 7nm (10Hz)

70nm (6kHz)

Linearity ±2.4µm

Alignment of lens system

- Optical lenses for wavelength<15 nm not applicable
- Optical system using mirrors
- Requirements: Sub-Nanometer!

Alignment of lens systems

Folding of the beam patch for reducing construction height

Measuring range: 1200µm

Resolution: 7nm

Positioning accuracy: 30nm

Thickness measurement of solar wafers in three measuring tracks

- Stable measuring system
- Synchronous aquisition of up to 8 channels
- Customer specific sensor design (extreme flat)

Travel displacement of a nano positioning unit at 4 K

Technical data:

- Constant technical characteristics at 4 K
- As small as possible thermal expansion
- Nanoresolution

Ambient conditions:

- Ambient temperature -270° C (4 K)
- Operating in ultrahigh vacuum

